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Regions of different heat transfer regimes and the dependence of heat 
transfer coefficients on the length of a curved channel have been 
determined by an experimental investigation. 

The m a i n  pecu l i a r i ty  of convect ive  heat  t r a n s f e r  
in a curved  channel  is due to the f ield of m a s s  c e n t r i f -  
ugal forces  which causes  the appearance  of a vor tex  
pa i r  in the t r a n s v e r s e  sect ion of the channel .  F o r  
la rge  heat f luxes and subs tan t ia l  channel  c r o s s - s e c t i o n  
d imens ions  an addit ional  fac tor  compl ica t ing  the phe-  
nomenon will  be t h e r m a l  convect ion due to g r av i t a -  
t ional  body forces .  The complex na tu re  of convect ive 
heat t r ans f e r ,  occu r r i ng  he re  in condi t ions  of coupled 
superpos i t ion  of forced  mot ion  and secondary  flows 
due to body forces ,  impels  the inves t iga to r  to t u rn  to 
an expe r imen ta l  method.  

The chief e lement  of the expe r imen ta l  equipment  
(Fig. 1) is a hor izon ta l ly  pos i t ioned shor t  curved  chan-  
nel ( l / d  e = 13.3), with a smooth ent rance ,  a squa re  
c ross  sec t ion  of 49 x 49 ram, and a rad ius  of c u r v a -  
tu re  Of the channel  axis  of R = 150 ram. The th in -  
walled p la tes  fo rming  the channel  were  of EI-437B 
s teel  and were  jo inted by m e a n s  of epoxy adhesive.  
Water  was supplied to the expe r imen ta l  sect ion f rom 
a cons t an t - l eve l  bath, i ts  flow r a t e  being de t e rmined  
by means  of a m e a s u r i n g  v e s s e l  downs t ream of the 
expe r imen ta l  sect ion.  Each pla te  fo rming  the working 
channel  had an e lec t r i c  hea te r  with individual ly  con-  
t r o l l ab l e  c u r r e n t  va lues .  F o r  equal iza t ion of t e m p e r a -  
ture ,  a l a y e r  of copper  0.1 m m  thick was e l e c t r o -  
deposi ted on the pla te  su r faces  on the h e a t e r  side. 

The heat  t r a n s f e r  coefficient  on the convex, con-  
cave, and f lat  su r f ace s  fo rming  the channel  were  
de t e rmined  by the grad ien t  method. 

On the su r face  of a curved or  f lat  p la te  in which a 
two-d imens iona l  t e m p e r a t u r e  f ie ld  exists ,  the m e a n  
heat  t r a n s f e r  coeff ic ient  in a length  x --- l ,  which c o r -  
r esponds  to a cen t r a l  angle 9 ,  is given by 

r ;(o,) 
a d~. (I) 

A tm~ ~ n  n=0 
0 

In ca lcu la t ing  the heat  t r a n s f e r  coeff ic ient  a f rom 
(1) for  a curved and a f lat  p la te  one needs to know the 
t e m p e r a t u r e  f ie lds  t =f(r, q~) and t = F(y, ~). The 
equat ions of these  f ields were  obtained by i n t e g r a -  
t ion of the heat  conduction d i f ferent ia l  equation, but  
t he i r  specif ic  fo rm is de t e rmined  by the t e m p e r a t u r e  
d i s t r ibu t ion  on the contours  of the longi tudinal  sec t ion  
of the p la tes  fo rming  the channel .  The ma thema t i ca l  

ba s i s  for the grad ien t  method for  curved  channels  
has been examined in [1, 2]*. 

T e m p e r a t u r e s  were  m e a s u r e d  on two curved  and 
one flat  p la te  with the aid of n i c h r o m e - c o n s t a n t a n  
thermocouples .  The thermoeouple  junct ions  were  in 
the fo rm of disks of 0 . 2 - m m  d i a m e t e r  and were so l -  
dered  into r e c e s s e s  in the wall  so as to be f lush with 
the surface.  Thermocouple  leads  of 0 .2- ram d iame te r  
were  laid in grooves and anchored with epoxy adhe-  
sive. The n u m b e r  of the rmocouples  was 22 on the 
ins ide  sur face  of each plate,  12 on the outer,  and 
5 each on the edges. The spacing of the t h e r m o -  
couples i n c r e a s e d  with i n c r e a s i n g  d i s t ance  f rom the 
channel  en t rance .  The m e a s u r e m e n t  of t e m p e r a t u r e  
was made us ing an R2/1 po ten t iomete r .  

Two-d imens iona l i t y  of the t e m p e r a t u r e  field, i . e . ,  
absence  of heat  flux ac ros s  the plate,  was a t ta ined 
by means  of t he r ma l  insu la t ion  of the s ide sur faces ,  
and by compensa t ing  for  the side heat  loss  by i n c r e a s -  

ing the hea t e r  width in c o m p a r i s o n  with the p la te  
width. At three sections of each plate six "tuning ~ 
thermocouples were attached over the width of the 
plate and were used to control the homogeneity of 
the temperature field in that direction. 

The stream temperature was varied in the range 
18 ~ ~ C, that of the inside surfaces of the channel 
walls in the range 25 ~ ~ C, and the stream velo- 
city in the range 0.00167-0.351 m/sec during the 
experiments. 

Reduction of the test results was done on a "Minsk" 
computer. The temperatures measured on the sur- 
faces were approximated by power multinomials with 
the aid of orthogonal Chebyshev polynomials. A sat- 
isfactory approximation of the temperature relations 
was attained using multinomials of not more than the 
fourth order. 

The integral appearing in (i) is expressed in terms 

of a sum of terms of an infinite series. A satisfactory 

accuracy in calculating this sum was reached with a 
number of terms not in excess of 60. Averaging of 

the heat transfer coefficient over the perimeter of the 
transverse section of the channel was accomplished 

according to the areas under the assumption that the 

two flat surfaces have the same heat transfer coef- 
ficient. The mean heat transfer coefficients were 

* In [2] the ana ly t ica l  solut ion of the t e m p e r a t u r e  
f ield p rob lem was extended to the case  of a r b i t r a r y  
heat  t r a n s f e r  condit ions on the faces  of p la tes  f o r m -  
ing a channel .  
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calcula ted for  12 va lues  of x/de--0.52, 1.02, 1.6, 2.43, 
3.21, 4.05, 4.8, 6.38, 8.05, 9.6, 11.2, 13.3. 

i 
B I I .. 
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Fig .  2. The c r i t e r i a  Nu and P as a funct ion 
of Reynolds number :  1) accord ing  to the fo r -  
mula  for l amina r ,  t r an s i t i ona l ,  and t u r b u -  
lent  flow in a tube;  2) accord ing  to Eq. (5); 
3, 4, 5, 6) au thor ' s  expe r imen ta l  data for x /d  = 
= 1.6, 4.8, 9.6 and 13.3 re spec t ive ly :  dotted 

l i n e s  a ,b ,  c, and d - - a c c o r d i n g  to the Meteis  
fo rmula  (14) for  the same  x /d  va lues ;  I) r e -  
gion of t h e r m a l  convect ion;  II) reg ion  of 
mixed convect ion;  III) r eg ion  of l a m i n a r  

flow with m a c r o v o r t i c e s .  

In p r o c e s s i n g  the tes t  data the mean  fluid t e m p e r -  
a ture  was taken as a r e fe rence .  The mix ing  t e m p e r -  
a ture  was m e a s u r e d  at the en t rance  to and at the 
exit f rom the working section.  In view of the smal l  
change in f luid t e m p e r a t u r e  in the working sect ion 
(2 ~ -0 .2~  a l i n e a r  change of fluid t e m p e r a t u r e  along 
the channel  was adopted. The mean  fluid t e m p e r a t u r e  
for a sec t ion  of the channel  was d e t e r m i n e d  as the 
a r i thme t i c  mean  of the t e m p e r a t u r e s  at the ends of 
the section. The equivalent  d i ame te r  was taken as a 
r e f e r ence  d imens ion .  

Ana lys i s  of the d i f ferent ia l  equation of mot ion of 
a fluid in a body force  f ield [3] has  given a s i m i l a r i t y  
c r i t e r i on  that r e f l ec t s  the effect of body fo rces  on the 
s t ream:  

P = A Fla/p'~ 2. (2) 

K a d i f fe rence  AF of m a s s  fo rces  a r i s e s  in a g r a v -  
i ta t ional  force  field f rom nonuni formi ty  of density,  
then, taking the channel  height h = d e as a r e f e r e n c e  
d imens ion ,  we obtain 

P = g~ae[3A t = Gr. (3) 
%,9 

In a cent r i fugal  force  field AF = PW2max/R. F o r  
l a m i n a r  flow Wmax/W = 2. The d i s tance  between 
the points  with m a x i m u m  and m i n i m u m  cent r i fugal  

force  (h/2} is taken as a r e f e r e nc e  d imens ion .  Al -  
lowing for  this we obtain f rom (2} 

( _ ~ ) ~  de de = De 2. (4) P = - - D - - =  Re2 --D 

The gravi ta t ional  and centr i fugal  forces  lead to 
the appearance,  in the t r a n s v e r s e  sec t ion  of the 
curved channel,  of pa i r ed  vo r t i ce s  whose axes of 
s y m m e t r y  a r e  perpendicu la r .  

The upper  par t  of Fig. 2 shows the form of the 
secondary  flows due to the cent r i fugal  (A) and g r av -  
i ta t ional  (B) fo rces .  One of the force  f ie lds  will  t h e r e -  
fore  have a dec is ive  effect on the heat  t r a n s f e r  p r o -  
cess ,  and the s t rength  of the i r  inf luence on the s t r e a m  
may be compared  by compar ing  the Gr and De 2 n u m -  
bers .  The upper  pa r t  of Fig. 2 shows the va r i a t ion  
of Gr and D J  with Re number  observed  in the exper -  
iments .  The lower pa r t  of the f igure  shows the ex- 
p e r i m e n t a l  r e su l t s  in the fo rm of a co r r e l a t i on  Nuf 
= f ( R e f )  for four r e l a t ive  channel  lengths.  The Nu 
n u m b e r  was d e t e r m i n e d  f rom the mean  heat  t r a n s f e r  

coeff icient  for  the channel.  The r e l a t ion  Nu] = f ( R e f )  
is a lso given for  a long s t ra ight  tube, as  ca lcula ted  
by the fo rmu la s  of Mikheeva [4] (l ine 1), and for  heat  
t r a n s f e r  in long coi led tubes  under  l a m i n a r  condit ions 
with mac rovo r t i c e s ,  obtained by reduc ing  the tes t  
data  f r o m  [5] and [6] (line 2) 

Nu] = 0.0575 Re~ v5 Pr~ .4a (d/D) ~ (Pr/Pr,~) ~ (5) 

This  fo rmula  was obtained by putt ing the tes t  data 
into the fo rm Kf =f(De)  with De = 26-7  �9 10 a, where 

K~ = Nuf = Nu~ (6) 
Re9.33 pry.4a (PrjPr,a) ~ NufT" 

An inves t iga t ion  was made in [5] of heat  t r a n s f e r  
in long coiled tubes us ing  water  as the heat  t r a n s f e r  
agent and D/d  = 6 .2-23 .8 ,  Ref = 2.  103-2.5 �9 104, l / d  > 

> 60. In [6] the coiled tubes were  inves t iga ted  with 
D/d = 23-62.5 ,  Ref  = 6 3 - 2 . 1 -  104, 1 /d  > 218. The heat  
t r a n s f e r  agent  was th ree  kinds of l iquid with P r  = 
= 7 -369 .  
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Fig.  3. Dependence of Kf  on De numbe r :  
1) f rom Eq. (5): 2, 3, 4, 5) au tho r ' s  expe r i -  
men ta l  data with x /d  = 1.6, 4.8, 9.6, and 
13.3 r e spec t ive ly :  dotted l ines  a, b, c, and 
d a re  f rom Eq. (16) for  the same x /d  va lues .  
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Formula (5) was obtained at small Gr and may be 

used whenever the effect of that parameter on the 

heat transfer may be neglected. 

Figure 3 shows the relation Ky =f(De) for various 
relative chmmel lengths, and gives also for compar- 

ison the line I, constructed from (5), whieh it is 
convenient in this case to write in the form 

Nu, = 0.0575 Re~ -an De~ -42 p~43 (pr,/Prxw)02~. (7) 

Ana lys i s  of F i g u r e s  2 and 3 enables  us to d e t e r -  
mine  the heat  t r a n s f e r  r eg imes .  

It may be seen f rom Fig. 2 that for  Ref < 1700 the 
heat t r a n s f e r  in tens i ty  is  independent  of Re, and 
there fore  Nu in this region  is de t e rmined  exclus ive ly  
by the the rmal  convect ion while De 2 << Gr. The t h e r -  
mal  convect ion region  is des igna ted  by the n u m e r a l  I 
in the f igures .  

F igure  3 shows that for  Re = 1700-6000 (De = 
= 690-2400) the De number ,  and there fore  also the 
cent r i fugal  forces ,  have p rae t i ca l l y  no inf luence on 
the heat t r a n s f e r  in tensi ty .  F i g u r e  2 shows that in 
the m a j o r  pa r t  of this region  Gr is cons ide rab ly  
l a r g e r  than De 2, the two quant i t ies  only becoming  
comparab le  in the r ight  s ide of the region.  F o r  this  
r eason  it may be a s s e r t e d  'chat reg ion  II is a mixed 
convect ion reg ion  in which the heat t r a n s f e r  is de-  
t e rmined  by the s imul t aneous  inf luence of forced and 
f ree  convection on the s t r e am.  

With fu r the r  i n c r e a s e  of Re the heat  t r a n s f e r  in -  
tens i ty  i n c r e a s e s  with i n c r e a s e  of De (Fig. 3), as 
De 2 >> Gr, and the re fo re  the effect of t he rma l  con-  
veet ion on the heat  t r a n s f e r  may be neglected.  As is 
known f rom ana lys i s  of flow s t r u e t u r e  in coiled tubes,  
there  will be l a m i n a r  flow of the f luid with m a c r o -  
vor t i ces  (Region II19 in this region  of va r i a t i on  of Re 
and De (Re > 6000, De > 2400). The upper  boundary  
of this region  may be es t ima ted  by Aronov ' s  formula ,  
obtained for long coiled tubes of c i r c u l a r  sect ion [7]: 

Rec~ : :  18 500 (d/D) ~ . (8) 

For  the curved channel  inves t iga ted  (D/d e = 6.1), 
a va lue  Recr  ~- 1.1 �9 104 was obtained f rom (8). This  
number  may change subs tan t i a l ly  for  shor t  channels ,  
however.  Ln the p r e s e n t  tes ts  (Re /up  to 2 - 10a), we 
were  not able to de t e rmine  the upper  boundary  of 
region III sharply.  

The boundary  es tab l i shed  in the p r e s e n t  i nves t i -  
gation for the t he rma l  and mixed convect ion region 
in a hor izon ta l  tube is not un ive r sa l .  Fo r  (GrPr ) f  - 
= 3.1 �9 107(Grf = 4.5.106) the mixed  eonveet ion reg ion  
occurs  for  Ref >- 1700, Fo r  o ther  va lues  of ( G r P r ) f  
specia l  expe r imen t s  a re  r equ i r ed  to d i scover  the 
boundar ies  of this region.  

The boundary  of the r eg ions  of mixed convect ion 
and of l a m i n a r  flow with m a e r o v o r t i e e s  due to c e n t r i f -  
ugal fo rces  may  be found approx imate ly  f rom the con-  
dit ion Grf  = Def 2. 

The l i t e r a t u r e  eontains  no i~format ion  on convec-  
t ive heat  t r a n s f e r  in a fluid flowing through a h o r i z o n -  
taI tube, under  condit ions when the heat  t r a n s f e r  is 
governed by t he rma l  convection.  

Therefore ,  in o rde r  to gene ra l i ze  the expe r imen ta l  
data on the effect of channel  length on heat  t r a n s f e r  
in the t he rma l  convect ion region  I, the r e su l t s  were  
compared  with Ol ive r ' s  fo rmulas  [8] for  mixed eon-  
vect ion in l a m i n a r  flow, and with those of Mikheeva 
[4] for f ree  convect ion around the outer  su r face  of a 
horizontal tube. For mixed convection in a horizon- 

tal tube with I/d ->- 70, Oliver obtained the formula 

Nu t = 1.75 [Gz t + 0.0083 (Gr Pr)~'rq % (b%,/bqa) ~ [4. (9) 

When the inf luence of forced  mot ion  on the heat  
t r a n s f e r  is removed,  Gz ~ O, and (9) takes the fo rm 

Nut = 0.35 (Gr Pr)~ "25 (Ft/~Iw) ~ (10) 

Mikheeva ' s  fo rmula  for  f r ee  convect ion a round the 
outer  su r face  of hor izon ta l  tubes has the fo rm 

N D = 0.51 (Gr Pr)~-25 (pr//Pr~,)0. ~5. (11 } 

The upper part of Fig. 4a shows experimental 

points for three values of Re typieal of the I region. 
Line i corresponds to (i0), and line 2 corresponds to 
(ii). It may be seen that the experimental heat trans- 
fer results are in good agreement with Mikheeva's 
formula. The lower part of Fig. 4a shows the rela- 

tion Nuf /NUfo  = f ix /de) ,  the quant i ty  Nuf0 used in the 
cons t rue t ion  of which being ca lcu la ted  aecord ing  to 

(11). Approximat ing  the tes t  da tawe obtain the fo rmu la  

Nuf/Nuf~ = 0.9i + 2,95 (de~x) ~ (12) 

eo r r e spond ing  to l ine 6 on the f igure .  

, I i U | -- 3 ' 
Nut I i ~ o I i 

" i o - -  5 

5 5qO 

'" X 

/.0 /0 iOz d-~ 

Fig. 4. Comparison of the experimental and calcu- 
lated data in Regions % (a) and III Oa) of the flow: 1) 
from Eq. (i0); 2) from Eq. (11); 3, 4, 5) experi-  
mental data of the author for Ref  = 88, 740, and 
1705 respdctively; 6) from Eq~ (12); 7, 8, 9) author's 
experimental data for Def = 2556, 4260, and 6969; 
10, 11, 12) from Eqo (7) for the same values of De; 

13) from Eq. (15). 
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Thus,  for  shor t  hor izon ta l  tubes and channels  
(s t ra ight  and curved),  the coeff icient  of heat  t r a n s f e r  
between the f luid and the wall, under  condit ions when 
the rma l  convect ion plays  an impor tan t  part ,  may be 
ca lcula ted  f rom the fo rmu la  

Nu~ = 

= 0.51 (Gr Pr)~ .25 (Prf/Pr~) ~ [0.91 -}- 2.95 (de/x)O.Sq. (13) 

The exper imen ta l  data on heat  t r a n s f e r  in mixed 
convect ion (Region II) have been compared  with 
Mete i s '  f o rmula  which was obtained for s t ra ight  h o r i -  
zontal tubes in tu rbu len t  flow: 

Nu, = 4.69 Re} .27 Pr~ .2~ Gry .07 (d/x) o-a6. (14) 

The dotted l ines  a, b, c, and d in Fig. 2 co r re spond  
to Eq. (14) for  the va lues  of Gr  and P r  o c c u r r i n g  in 
the tes ts  and with x/d e = 1.6, 4.8, 9.6, 13.3. 

It may be seen that Eq. (14) is roughly a c o r r e c t  
descr ip t ion  of the effect of r e l a t ive  channel  length on 
the in tens i ty  of heat  t r a n s f e r  in the condi t ions  under  
examinat ion.  

The reduc t ion  of the tes t  data for the region  of l a m -  
i na r  flow with m a e r o v o r t i c e s  (III) was pe r fo rm e d  under  
the assumpt ion  that the heat  t r a n s f e r  coefficient  in a 
long channel  of square  sect ion may be desc r ibed  by 
Eq. (7). 

The upper  par t  of Fig. 4b shows the expe r imen ta l  
points  defining the re la t ion  Nuf =J(x/d e) for three  
values  of De, while the l ines  10, 11, and 12 have been 
ca lcula ted  for  these  s a m e  De values  accord ing  to (7). 
Assuming  that (7) is val id for  x/d e -> 50, the tes t  data 
examined above may be used to obtain a co r r ec t i on  to 
the length r e q u i r e d  for  ca lcu la t ing  heat t r a n s f e r  in 
shor t  curved channels .  

The lower  pa r t  of Fig. 4b shows the re la t ion  Nuf /  
/Nu/0, for  which the quant i ty  Nuf0 has been d e t e r -  
mined  f rom (7). This  r e la t ionsh ip  is de sc r ibed  well by 
the fo rmula  

Nut/Nut~ = 0.96 -!- 2.41 (delX)~.~ , (15) 

corresponding to line 13 in Fig. 41o. 

Therefore, for laminar flow with macrovortices, 

the heat transfer in short curved channels may be 
calculated from the formula 

Nuf = 0.0575 Re ~ De ~ Pr~ -43 • 

(16) 

The dotted l ines  a, b, e, and d in Fig. 3 c o r r e -  
spond to (16) for  four va lues  of x/d. It may be seen 
that the a g r e e m e n t  with the exper imen ta l  data is fully 
sa t i s fac tory  r ight  up to Def = 7 �9 103, which c o r r e -  
sponds in the expe r imen t s  to a value Re_/, = 1.7 �9 104. 

NOTATION 

D is the d i a m e t e r  of cu rva tu re  of the channel  axis;  
d is the tube d iame te r ;  d e is the equivalent  d iamete r ;  
AF is the d i f ference  in the m a s s  forces ;  g is the a c -  
ce le ra t ion  due to gravi ty;  h is the channel  height; Kf 

is a coefficient  defined by Eq. (6); l is the c h a r a c -  
t e r i s t i c  d imens ion ,  the channel  length; n is the no rma l  
to the heat  t r a n s f e r  sur face ;  P is a p a r a m e t e r  de-  
sc r ib ing  the inf luence of m a s s  forces  on the s t r e a m  of 
fluid; R is the rad ius  of cu rva tu re  of the channel  axis;  
t is the t e m p e r a t u r e ;  At m is the mean  t e m p e r a t u r e  
head; (0t/0n)n= 0 is the n o r m a l  t e m p e r a t u r e  g rad ien t  at 
the heat  t r a n s f e r  sur face ;  W is the flow veloci ty  of the 
fluid; Wma x is the m a x i m u m  veloci ty  in the channel  
sect ion;  x, y, and r a re  coord ina tes ;  Gr  is the Grashof 
number ;  Gz is the Graetz  number ;  Nu is the Nussel t  
number ;  P r  is the P rand t l  number ;  Re is the Reynolds 
number ;  De is the Dean number ;  ~ is the mean  heat 
t r a n s f e r  coefficient;  ~ is the coeff icient  of volume ex-  
pansion;  X is  the t h e r m a l  conduct ivi ty  of the wall m a -  
t e r i a l ;  p is the dynamica l  v iscos i ty ;  u is the k inemat ic  
v i scos i ty ;  p is the densi ty;  W is the angle at the cen te r  
co r r e spond ing  to a channel  length x. The subsc r ip t s  f 
and W desc r ibe  physica l  p a r a m e t e r s  evaluated at the 
t e m p e r a t u r e  of the fluid and of the wall, respec t ive ly .  
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